
Autonomous mobile robots (AMRs) have been proven useful for smart factories and have the potential to revolutionize critical missions, such as disaster rescue. AMRs can perceive the environment, plan for assigned tasks, and act on the plan. Motion control is critical to the robot's action, which is accomplished through trajectory optimization to refine the robot's states using a physics model. However, the high computational complexity of trajectory optimization poses significant challenges for AMRs with limited power and computing resources.