All Projects

You can use the filters below to restrict this based on Technology or Skills.
Competition 2024
Competition: Hardware Implementation

Sensing for Precision Agriculture

Our innovative SoC design for precision agriculture revolutionizes field management by deploying a robust mesh network of sensor-based devices, capable of detailed monitoring and swift response to variations in soil health, erosion, drought, and pest activities. This system not only ensures reliability through its mesh architecture—eliminating single points of failure—but also incorporates diverse sensors for comprehensive data acquisition. It's engineered for energy efficiency to sustain operation throughout an entire crop season, significantly optimizing resource use and reducing waste.

Reference Design
Active Project
Nanosoc ADC Integration
SoClabs

ADC Integration in nanoSoC
Rationale

The aim of this project is to define a mixed signal subsystem for the nanosoc reference design. 

In order to interface with real-world signals in a digital SoC, an analog to digital conversion is needed. The mixed signal subsystem should be able to sample analog signals at a regular sampling rate, and transmit a digital representation of this signal to the rest of the nanosoc system. 

Competition 2024
Competition: Hardware Implementation
Monitoring and enhancing plant growth in space ecosystems

This project focuses on developing a plant growth monitoring system for space exploration missions using the ARM Cortex-M0 microcontroller core. The projects aim to develop a SOC based on ARM M0 core for interactive plant monitoring by interfacing AHB lite, GPIO, timers, and communication protocols such as UART, I2C, SPI, and co-processors.  This project also proposes two co-processors for interactive plant monitoring and control. One AI co-processor for classification and prediction of plant and environmental data.

Competition 2024
Competition: Hardware Implementation
Smart Machine Box for Industrial IoT with High Performance ASIC Prototyping System

Nowadays, rotating machine is the power source for most production equipment and is widely used in manufacturing factories. Common rotating machinery mainly includes bearings, gears, shafts, and the others. However, rotating machines suffer from frequent collisions and vibrations which lead to wearing and aging, which increases the chance of failure in the overall system operation. This make the cost of factories increase and the quality of production deteriorate. Therefore, the industries gradually value the usage of accurate and efficiency predictive maintenance system.

Competition 2024
Competition: Collaboration/Education

IMPLEMENTATION OF FIXED TIME BASED TRAFFIC LIGTH SYSTEM USING FPGA WITH VERILOG HDL.

This Project is to develop traffic light system that can reduce traffic congestion with the aid of counters for each lane and acts wisely with the intersection in real time based with a fixed time constrain, include both hardware and software requirements using SOC FPGA technology with fundamental specification for the Register Transfer Level (RTL).

Competition 2024
Competition: Hardware Implementation

ARM Cortex M0 Based SoC for Biomedical Applications

Conventional healthcare is expensive and reliant on the physical presence of the patients. Continuous health monitoring tracks vital health parameters like heart rate, blood pressure, etc. While these work well in measuring the parameters, modern-day devices rely on the cloud to compute and interpret data. This results in an increase in data transfer between the device and the cloud, and if this connection breaks, there can be no interpretation of data. Hence, there is a need to shift the computation to the hardware, referred to as "Edge Computing".

Reference Design
Active Project
High bandwidth expansion subsystem block diagram
SoClabs

High Bandwidth Expansion Subsystem
The high bandwidth expansion subsystem is for use in systems where high bandwidth transfer to the hardware accelerator is required. This subsystem can be added to a larger SoC through the 2x full AXI ports (1 subordinate and 1 manager).
Competition 2024
Competition: Collaboration/Education

Low-Cost and Low-Power Data Acquisition System(DAQs) for Real-time Data Collection

The development of a Low-Cost and Low-Power Data Acquisition System(DAQs). The DAQs will be made up of end-terminal and a gateway. The end-terminal will be micro-controller-driven device built on a SoC FPGA technology with built-in capability for machine learning. The end-terminal will be able to transmit and receive data using the Low Power Wide Area Networking (LPWAN) communication protocol that functions on LoRA.LoRa is a wireless radio frequency technology that operates in a license-free radio frequency spectrum.

Competition 2024
Competition: Hardware Implementation
Own created Image

Interference Detection and Mitigation Accelerator for Automotive Radar SoCs

Advancements in electronics, wireless communications, and sensing technologies have made possible a multitude of smart sensing features in automotives. Integrating high-frequency sensors, digital signal processors and hardware accelerator engines on a single system on a chip (SoC) enhances sensing computation potential of radar sensors utilized in automotives.

Reference Design
Active Project
Testboard and nanosoc Chip
SoClabs

nanoSoC Test/development Board

A physical test environment is required for ASIC devices fabricated following tape out. The nanoSoC test board provides a complete test environment for ASIC designs based on the nanoSoC reference design and enables the showcase of any custom designs that utilise it.  Reviewing the function of nanoSoC identifies a number of design criteria for the test board: